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Drawing and understanding a graph is much more than connecting a few points with 
straight lines – like in a dot-to-dot coloring book! Technology can be also used to obtain 
a portion of a graph but do we really understand what we see? Doubtfully! Many years 
ago I “tore up” my right knee playing racket sports and went to see Dr. P for an 
evaluation and an x-ray. He showed me the x-ray and asked if I saw the problem. We 
were looking at the same “graph” but he understood, I did not. I chose him to repair my 
knee since I did not really understand the problem, much less have the credentials to fix 
it. We can gain a partial understanding of graphs by studying limits of functions. 
 

FUNdamental Limit Question: If the x values have a pattern as we approach 0x  

 

 
Approach

0

Number (One or Two-Sided)
x x


   

 

do the corresponding  ( )f x  values have a pattern  

 

 
Approach

( ) ?????  (  can be a number or ) f x L L     
 

It is critical to understand that to have a limit, ALL the f(x) values MUST BE 
APROACHING THE SAME THING!  
 

FUNdamental Limit Question (in symbols): 
Implies

0 ( ) ?????x x f x L    

 

In Calculus Notation: 
0

( ) ?????
x x
Lim f x L


  

 

There are four (4) types of options we consider:    
 

1. Finite Two-sided (& One-sided) Limits: 0 ;x yx L    

a. Two-sided: 0  xx   

b. One-sided: 0  xx   

i. Left: 0 0[ ]  L
xx x  

ii. Right: 0 0[ ]  R
xx x  
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Consider the function rational 
 2 4 ( 1)

( )
( 2)

x x
f x

x

 



 

 

First note that 2x   is NOT in the domain of the function. Also note that as the 
x values as chosen “closer and closer” to 2x  (BUT NEVER EQUAL TO “2”), 
the corresponding f(x) values get “closer and closer” to “4” on the y-axis. We call 
“4” the limit and write  
 

 
2

( ) 4
x

Lim f x


  

 

 
 
 

The actual goal is NOT to look at the graph and “see” what appears to be going 
on, BUT to develop analytical tools – forthcoming – to first determine what the 
graph has to be doing and use that information to construct the appropriate portion 
of the graph. 

 

Consider the function 
4

( )
x

f x
x

 , an absolute value related function. 

 

First note that 0x   is NOT in the domain of the function. In this example as 
the x values are chosen “closer and closer” to 0x  (BUT NEVER EQUAL TO 
“0”), the corresponding f(x) values are NOT getting  “closer and closer” to some 
unique number so that   
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0

( )  Undefined, does not exist, ...
x

Lim f x


  

 

However, if we choose x values “closer and closer” to 0x  but less than 0 (to 
the “left” we say), the corresponding f(x) values are getting  “closer and closer” 
to “- 4” Actually, in this particular case, they are actually equal to “- 4” – now 
that’s close. Hence we write    

 

  
0

( ) 4
x
Lim f x


   

 This is called the limit from the left and the “-“ in 0x
, whatever 0x is, just 

means that we are choosing numbers less than 0x . It has NOTHING to do with 

whether we are choosing positive or negative numbers! 
 

 In a similar manner, we have 
 

  
0

( ) 4
x
Lim f x


   

 

 
 

Again, our actual goal is to develop analytical tools to first determine what the 
graph has to be doing and use that information to construct the appropriate portion 
of the graph. 
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2. Infinite Two-sided (& One-sided) Limits: 0 ;  xx L  

a. Two-sided: 0  xx   

b. One-sided: 0  xx   

i. Left: 0 0[ ]  L
xx x  

ii. Right: 0 0[ ]  R
xx x  

 

Consider the function 
 2

1
( )

3
f x

x



, the basic 

2

1

x
function shifted three (3) 

units to the right. First note that 3x   is NOT in the domain of the function. 
Also note that as the x values as chosen “closer and closer” to 3x  (BUT 
NEVER EQUAL TO “3”), the corresponding f(x) values are increasing without 
bound through positive values. Hence, we have an infinite two-sided limit and 
write  
 

 
3

( )
x

Lim f x


    

 
 The vertical line 3x   is called a vertical asymptote of the function. 
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Consider the function 
1

( )
2

f x
x




, the basic 
1

x
function shifted two (2) units 

to the left. First note that 2x    is NOT in the domain of the function.  
As the x values as chosen “closer and closer” to 2x   from the “left”, the 
corresponding f(x) values are decreasing without bound through negative  
 values but are increasing without bound from the “right. Hence, we have two (2) 
infinite one-sided limits and write  
 

 
2

2

( )

( )
x

x

Lim f x

Lim f x









  

  
 

 

 The vertical line 2x    is called a vertical asymptote of the function.  Also, 
 

  
2

( ) Undefined, does not exist, ...
x
Lim f x


  
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3. Infinite Limits at Infinity: 0 ;   x L   
 

Consider the polynomial function 
3( ) 6f x x x  . This time we first choose 

our values for x  “larger and larger” without bound. The corresponding f(x) values 
are also increasing without bound through positive values, but this time they are 
y-values. We call this an infinite limit at infinity and write  
 

 ( )
x
Lim f x
 

    

Now, we choose our values for x  “smaller and smaller” without bound. The 
corresponding f(x) values are decreasing without bound through negative values. 
We also call this an infinite limit at infinity and write  
 

 ( )
x
Lim f x
 

    
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4. Finite Limits at Infinity: 0 ;   yx L   
 

Consider the rational function 
 2

2

3 4
( )

4

x
f x

x





. We choose our values for x  

“larger and larger” without bound. The corresponding f(x) values are also 
approaching “3”. We call this a finite limit at infinity and write  
 

 ( ) 6
x
Lim f x
 

  

 The horizontal line 6y   is called a horizontal asymptote of the function. Also, 

as we choose our values for x  “smaller and smaller” without bound. The 
corresponding f(x) values also approach “6”. We also call this a finite limit at 
infinity and write  
 

 ( ) 6
x
Lim f x
 

  

 

 
 

If  yL  , we say the limit converges. Otherwise we say the limit diverges. If 

 L , we say the limit diverges to  . 
 
Remember   does not represent a number. 


