Numbers – Complex Two Part Numbers Real Part & Imaginary Part

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

Complex Numbers are two (2) part numbers:

$$z = Part #1 + i Part #2$$
$$= a + i b = (a,b)$$

where a & b are real numbers and "i" is called the imaginary unit – lousy name. Examples of complex numbers that we will use below:

$$z_1 = a + ib = 2 + 3i$$

 $z_2 = c + id = -1 + 5i$

Imaginary Unit Definition: $i = \sqrt{-1}$

Key: Positive Integer "I" can be written as I = 4Q + R where Q is the Quotient and R is the Remainder satisfying $0 \le R \le 3$. Hence,

$$i^{I} = i^{4Q+R} = (i^{4})^{Q} * i^{R} = 1^{Q} * i^{R} = \begin{cases} 1 ; R = 0 \\ i ; R = 1 \\ -1 ; R = 2 \\ -i ; R = 3 \end{cases}$$

The good news is that complex numbers satisfy the exponential and other properties that real numbers satisfy!

We have the following:

$$i = i^{1} = \sqrt{-1}$$
 Definition
 $i^{2} = -1$
 $i^{3} = i^{2} * i^{1} = -1 * i = -i$
 $i^{4} = i^{2} * i^{2} = (-1) * (-1) = 1$
 $i^{5} = i^{4} * i^{1} = i$
 $i^{6} = i^{4} * i^{2} = -1$

.

.

.

(1) Question: $\mathbf{i}^{79} = ?$ Solution:

Step	Equation	Reason
0	i ⁷⁹ =	
1	$\mathbf{i}^{4*19+3} =$	
2	$\left(\mathbf{i}^4\right)^{19}\mathbf{i}^3 =$	
3	$\left(1\right)^{19}\mathbf{i}^{3} =$	
4	$\mathbf{i}^3 =$	
5	-i	

(2) **Question**: $\frac{1}{i^{19}} = ?$

Step Equation Reason $0 \frac{1}{\mathbf{i}^{19}} = 1$			
$ \begin{array}{cccc} 0 & & & & \\ \hline \mathbf{i}^{19} = & & \\ 1 & & & \\ \hline \mathbf{i}^{4^*4+3} = & & \\ 2 & & & \\ \hline \mathbf{i}^{1} & & \\ \hline \mathbf{i}^{4^*4+3} = & & \\ 2 & & & \\ \hline \mathbf{i}^{1} & & \\ \hline $	Step	Equation	Reason
$2 \qquad \frac{1}{\left(\mathbf{i}^{4}\right)^{4} \mathbf{i}^{3}} =$ $3 \qquad \frac{1}{\left(1\right)^{4} \mathbf{i}^{3}} =$ $4 \qquad \frac{1}{\mathbf{i}^{3}} =$ $5 \qquad \frac{1}{-\mathbf{i}} =$ $6 \qquad -\frac{1}{\mathbf{i}} * \frac{\mathbf{i}}{\mathbf{i}} =$ $7 \qquad -\frac{\mathbf{i}}{\mathbf{i}^{2}} =$ $8 \qquad -\frac{\mathbf{i}}{-1} =$	0	${\mathbf{i}^{19}} =$	
$3 \qquad \frac{1}{(1)^4 i^3} =$ $4 \qquad \frac{1}{i^3} =$ $5 \qquad \frac{1}{-i} =$ $6 \qquad -\frac{1}{i} * \frac{i}{i} =$ $7 \qquad -\frac{i}{i^2} =$ $8 \qquad -\frac{i}{-1} =$	1	$\frac{1}{\mathbf{i}^{4^*4+3}} =$	
$4 \qquad \frac{1}{\mathbf{i}^3} = $ $5 \qquad \frac{1}{-\mathbf{i}} = $ $6 \qquad -\frac{1}{\mathbf{i}} * \frac{\mathbf{i}}{\mathbf{i}} = $ $7 \qquad -\frac{\mathbf{i}}{\mathbf{i}^2} = $ $8 \qquad -\frac{\mathbf{i}}{-1} = $	2	$\frac{1}{\left(\mathbf{i}^4\right)^4\mathbf{i}^3} =$	
$5 \qquad \frac{1}{-\mathbf{i}} = $ $6 \qquad -\frac{1}{\mathbf{i}} * \frac{\mathbf{i}}{\mathbf{i}} = $ $7 \qquad -\frac{\mathbf{i}}{\mathbf{i}^2} = $ $8 \qquad -\frac{\mathbf{i}}{-1} = $	3	$\frac{1}{\left(1\right)^{4}\mathbf{i}^{3}} =$	
$6 \qquad -\frac{1}{\mathbf{i}} * \frac{\mathbf{i}}{\mathbf{i}} = $ $7 \qquad -\frac{\mathbf{i}}{\mathbf{i}^2} = $ $8 \qquad -\frac{\mathbf{i}}{-1} = $	4	$\frac{1}{\mathbf{i}^3}$ =	
$7 \qquad -\frac{\mathbf{i}}{\mathbf{i}^2} = 8 \qquad -\frac{\mathbf{i}}{-1} = 8$	5		
$8 \qquad -\frac{\mathbf{i}}{-1} =$	6		
8=	7	$-\frac{\mathbf{i}}{\mathbf{i}^2} =$	
9 i		_	
	9	i	

(3) Question: $i^{-173} = ?$ Solution:

Step	Equation	Reason
0	$i^{-173} =$	
1	$\frac{1}{\mathbf{i}^{173}} =$	
2	$\frac{1}{\mathbf{i}^{4*43+1}} =$	
3	$\frac{1}{\left(\mathbf{i}^4\right)^4\mathbf{i}^1} =$	
4	$\frac{1}{\left(1\right)^4\mathbf{i}^1} =$	
5	$\frac{1}{\mathbf{i}} =$	
6	$\frac{1}{\mathbf{i}} * \frac{\mathbf{i}}{\mathbf{i}} =$	
7	$\frac{\mathbf{i}}{\mathbf{i}^2} =$	
8	$\frac{\mathbf{i}}{-1} =$	
9	-i	

Definitions: A **complex number** has the "standard" form

$$z = a + ib = (a,b)$$
 where $i = \sqrt{-1}$
 $= (\text{Real Part}) + i(\text{Imaginary Part}) = (\text{Real Part, Imaginary Part})$
so
"a" = Real Part of z
"b" = Imaginary Part of z
Also
 $\overline{z} = a - ib = \text{conjugate of z}$ [Change the SIGN of the Imag Part]
&
 $|z| = \sqrt{a^2 + b^2} = \text{magnitude of z}$

Note: Every real number "x" can be written as a complex number:

$$x = x + 0i$$

(4) Question: Find the conjugate of $z_1 = 2 - 3i$ Solution:

The conjugate of $\mathbf{a} + \mathbf{i} \mathbf{b}$ is $\mathbf{a} - \mathbf{i} \mathbf{b} = 2 + 3\mathbf{i}$.

(5) **Question**: Find the magnitude of $\mathbf{z}_1 = 2 - 3\mathbf{i}$. **Solution**:

The magnitude of $\mathbf{a} + \mathbf{i} \, \mathbf{b}$ is $\sqrt{\mathbf{a}^2 + \mathbf{b}^2} = \sqrt{(2)^2 + (3)^2} = \sqrt{13}$.

Since a complex number $\mathbf{z} = \mathbf{a} + \mathbf{ib}$ can be considered as the ordered pair (2,-3), we can graph it using the Number Plane:

Note: We can think of a complex number as a **vector** since it has a magnitude and direction.

Operations with Complex Numbers:

Let

$$z_1 = a + ib = 2 + 3i$$

 $z_2 = c + id = -1 + 5i$

Sum:
$$z_1 + z_2 = (a+ib) + (c+id) = \underbrace{(a+c)^{Part} + [b+d]^{Imag\ Part}}_{\text{Imag\ Part}}$$

Example:
$$z_1 + z_2 = (2 + 3i) + (-1 + 5i) = 1 + 8i$$

Difference:
$$z_1 - z_2 = (a + ib) - (c + id) = \underbrace{(a - c)}^{\text{Real Part}} + \underbrace{(b - d)}_{\text{Im ag Part}} i$$

Example:
$$z_1 - z_2 = (2+3i) - (-1+5i) = 3-2i$$

Product: $z_1 * z_2 = (ac - bd) + (ad + bc)i$

Example:

$$z_1 * z_2 = (2+3i)*(-1+5i) = -2+10i-3i+15i^2$$

= -2+7i-15 = -17+7i

Quotient:
$$\frac{z_1}{z_2} = \frac{a+ib}{c+id} = \frac{a+ib}{c+id} * \frac{c-id}{c-id} = \frac{\left(ac+bd\right) + \left(bc-ad\right)i}{c^2+d^2}$$

Example:

$$\frac{z_1}{z_2} = \frac{2+3i}{-1+5i} = \frac{2+3i}{-1+5i} * \frac{-1-5i}{-1-5i} = \frac{(2+3i)*(-1-5i)}{(-1+5i)*(-1-5i)}$$
$$= \frac{-2-10i-3i-15i^2}{1+5i-5i-25i^2}$$
$$= \frac{13-13i}{26} = \frac{1}{2} - \frac{1}{2}i$$

Below are a few more examples in multiple choice format:

In Examples 6-9, define

$$\mathbf{z}_1 = 2 - 3\mathbf{i}$$

$$\mathbf{z}_2 = 5 + 4\mathbf{i}$$

(6) **Typical Question**: The real part of $\mathbf{Z}_1 + \mathbf{Z}_2$ equals

- A) -7
- B) -1
- C) 1
- D) 7

ANSWER: D

Step	Equation	Reason
0	$\mathbf{z}_1 + \mathbf{z}_2 =$	
1	$(2-3\mathbf{i})+(5+4\mathbf{i})=$	
2	(2+5)+(-3+4)i =	
3	7 + i	

(7) **Typical Question**: The imaginary part of $\mathbf{Z}_1 - \mathbf{Z}_2$ equals

- A) -7 B) -3
- C) 3
- D) 7

ANSWER: A

Solution:

Step	Equation	Reason
0	$\mathbf{z}_1 - \mathbf{z}_2 =$	
1	$(2-3\mathbf{i})-(5+4\mathbf{i})=$	
2	(2-5)+(-3-4)i =	
3	-3-7i	

(8) **Typical Question**: The product $\mathbf{z}_1 * \mathbf{z}_2$ equals

- A) -22 7i
- B) -22 + 7i
- C) 22-7i
- D) 22 + 7i

ANSWER: C

Step	Equation	Reason
0	$\mathbf{z}_1 * \mathbf{z}_2 =$	
1	$(2-3\mathbf{i})^*(5+4\mathbf{i}) =$	
2	$10 + 8\mathbf{i} - 15\mathbf{i} - 12\mathbf{i}^2 =$	
3	$10 + 8\mathbf{i} - 15\mathbf{i} - 12(-1) =$	
4	$10 + 8\mathbf{i} - 15\mathbf{i} + 12 =$	
5	22-7 i	

(9) **Typical Question**: The quotient $\frac{\mathbf{z}_1}{\mathbf{z}_2}$ equals

A)
$$\frac{-2-23i}{41}$$

B)
$$\frac{-2+23i}{41}$$

B)
$$\frac{-2+23i}{41}$$
C) $\frac{-2+23i}{41}$
D) $\frac{2+23i}{41}$

D)
$$\frac{2+23i}{41}$$

ANSWER: A

Step	Equation	Reason
0	$\frac{\mathbf{z}_1}{\mathbf{z}_2} =$	
1	$\frac{2-3\mathbf{i}}{5+4\mathbf{i}} =$	
2	$\frac{2-3i}{5+4i} * \frac{5-4i}{5-4i} =$	
3	$\frac{10 - 8\mathbf{i} - 15\mathbf{i} + 12\mathbf{i}^2}{25 - 16\mathbf{i}^2} =$	
4	$\frac{10 - 8\mathbf{i} - 15\mathbf{i} + 12(-1)}{25 - 16(-1)} =$	
5	$\frac{10 - 8\mathbf{i} - 15\mathbf{i} - 12}{25 + 16} =$	
6	$\frac{-2-23\mathbf{i}}{41} =$	