Circles

[Center C(h, k) and Radius r]

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

The **circle** is an important application of the distance formula.

Definition: A circle is the set of all points P(x, y) that are a fixed distance r, called the radius, from a fixed point C(h,k), called the center.

Circle Equation: The equation of the circle with radius r and center C(h,k), is given by

$$\sqrt{(x-h)^2 + (y-k)^2} = r ; (x-h)^2 + (y-k)^2 = r^2$$

where P(x, y) represents a point on the circle.

Its **extreme points**, points on the graph that have a maximum/minimum x or y values, are

$$(h-r,k);(h+r,k)$$

 $(h,k-r);(h,k+r)$

The **domain**, the projection of the graph onto the x-axis, is $[\mathbf{h} - \mathbf{r}, \mathbf{h} + \mathbf{r}]_x$. These are the *allowable* x values.

The **range**, the projection of the graph onto the y-axis, is $[\mathbf{k} - \mathbf{r}, \mathbf{k} + \mathbf{r}]_y$. These are the *allowable* y values.

The x coordinates of the x-intercept points, if any, are solutions of $(x-h)^2 + (0-k)^2 = r^2$ Note: y = 0

The y coordinates of the y-intercept points, if any, are solutions of $(\mathbf{0} - \mathbf{h})^2 + (\mathbf{y} - \mathbf{k})^2 = \mathbf{r}^2$ Note: $\mathbf{x} = \mathbf{0}$

Note: These are the points where the graph of the circle intersects with either the x-axis or y-axis.

The following graph shows an example using these definitions:

Example 01: Given C(h,k) = C(1,-2) and radius r = 3, find the following:

a. The **equation** of the circle:

Step	Equation	Reason
0	$(\mathbf{x} - \mathbf{h})^2 + (\mathbf{y} - \mathbf{k})^2 = \mathbf{r}^2$	
1	$(x-[1])^2 + (y-[-2])^2 = [3]^2$	Be careful with the minus signs
2	$(\mathbf{x}-1)^2 + (\mathbf{y}+2)^2 = 3^2$	
3	$\mathbf{x}^2 - 2\mathbf{x} + 1 + \mathbf{y}^2 + 4\mathbf{y} + 4 = 9$	
4	$x^2 + y^2 - 2x + 4y - 4 = 0$	Quadratic Form

b. The **extreme points**:

Step	Extreme Points	Reason
0	$(\mathbf{h}-\mathbf{r},\mathbf{k});(\mathbf{h}+\mathbf{r},\mathbf{k})$	
1	Points: $(-2,-2)$; $(4,-2)$	
0	(h,k-r);(h,k+r)	
1	Points: $(1,-5)$; $(1,1)$	

Note: The center C(1,-2) is the mid-point of the extreme points:

1.
$$(-2,-2)$$
; $(4,-2)$

2.
$$(1,-5)$$
; $(1,1)$

e. The **x-intercept points**: Set y = 0 and solve for x

Step	x-intercept points	Reason
0	$\mathbf{x}^2 - 2\mathbf{x} - 4 = 0$	Solve
1	$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{a}\mathbf{c}}}{2\mathbf{a}}$; $\mathbf{a} = 1$; $\mathbf{b} = -2$; $\mathbf{c} = -4$	
2	$\mathbf{x} = \frac{-[-2] \pm \sqrt{[-2]^2 - 4[1][-4]}}{2[1]}$	
3	$\mathbf{x} = \frac{2 \pm \sqrt{4 + 16}}{2}$	
4	$\mathbf{x} = \frac{2 \pm \sqrt{20}}{2} = \frac{2 \pm 2\sqrt{5}}{2}$	
5	$\mathbf{x} = 1 \pm \sqrt{5}$	
6	$\mathbf{x} = 1 - \sqrt{5} \approx -1.236 \mid \mathbf{x} = 1 + \sqrt{5} \approx 3.236$	
7	Points: $(1-\sqrt{5},0)$; $(1+\sqrt{5},0)$ (-1.236,0); $(3.236,0)$	

The **y-intercept points**: Set x = 0 and solve for y

Step	y-intercept points	Reason
0	$\mathbf{y}^2 + 4\mathbf{y} - 4 = 0$	Solve
1	$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$; $a = 1$; $b = 4$; $c = -4$	
2	$\mathbf{y} = \frac{-[4] \pm \sqrt{[4]^2 - 4[1][-4]}}{2[1]}$	
3	$\mathbf{y} = \frac{-4 \pm \sqrt{16 + 16}}{2[1]}$	
4	$\mathbf{y} = \frac{-4 \pm \sqrt{32}}{2} = \frac{-4 \pm 4\sqrt{2}}{2}$	
5	$\mathbf{y} = -2 \pm 2\sqrt{2}$	
6	$\mathbf{y} = -2 - 2\sqrt{2} \approx -4.83 \; ; \; \mathbf{y} = -2 + 2\sqrt{2} \approx +0.83$	
7	Points: $(0, -2 - 2\sqrt{2})$; $(0, -2 + 2\sqrt{2})$ (0, -4.828); $(0, 828)$	

Note: Always draw the graph and make sure that *all* points are where they are supposed to be. If NOT, "Fix it"!

Circles, ellipses, parabolas, and hyperbolas have the following form:

General Quadratic Equation in x & y:

$$\mathbf{A}\mathbf{x}^2 + \mathbf{B}\mathbf{x}\mathbf{y} + \mathbf{C}\mathbf{y}^2 + \mathbf{D}\mathbf{x} + \mathbf{E}\mathbf{y} + \mathbf{F} = 0$$

This will be a circle if $A = C \neq 0$ (B = 0). We must *complete the square* twice, once for "x" and once for "y", to determine the Center & Radius.

Example 02: Given the circle defined by $\mathbf{x}^2 + \mathbf{y}^2 + 6\mathbf{x} - 10\mathbf{y} + 9 = 0$, find the following:

a. The center C(h,k) and radius r:

Step	Equation	Reason
0	$x^2 + y^2 + 6x - 10y + 9 = 0$	A = 1 = C
		B = 0
1	$\mathbf{x}^2 + 6\mathbf{x} + [9] + \mathbf{y}^2 - 10\mathbf{y} + [25] = -9 + [9] + [25]$	$\left[\frac{1}{2}(6)\right]^2 = 9$
1		$\left[\frac{1}{2}(-10)\right]^2 = 25$
2	$(x+3)^2 + (y-5)^2 = 5^2$	
3	Center: $C(-3,5)$; Radius: $r = 5$	

b. The **extreme points**:

Step	Extreme Points	Reason
0	$(\mathbf{h}-\mathbf{r},\mathbf{k});(\mathbf{h}+\mathbf{r},\mathbf{k})$	
1	Points: $(-8,5)$; $(2,5)$	
0	$(\mathbf{h},\mathbf{k}-\mathbf{r});(\mathbf{h},\mathbf{k}+\mathbf{r})$	
1	Points: $(-3,0)$; $(-3,10)$	

- c. The **domain**: [-8,2]
- d. The **range**: [0,10]

e. The **x-intercept points**: Set y = 0

x-intercept points	Reason
$\mathbf{x}^2 + 6\mathbf{x} + 9 = 0$	Solve
$\left(\mathbf{x}+3\right)^2=0$	
$\mathbf{x} + 3 = 0$	
$\mathbf{x} = -3$	
Point: $(-3,0)$	
	$\mathbf{x}^2 + 6\mathbf{x} + 9 = 0$ $(\mathbf{x} + 3)^2 = 0$ $\mathbf{x} + 3 = 0$ $\mathbf{x} = -3$

f. The **y-intercept points**: Set x = 0

Step	y-intercept points	Reason
0	$\mathbf{y}^2 - 10\mathbf{y} + 9 = 0$	Solve
1	$(\mathbf{y}-1)(\mathbf{y}-9)=0$	
2	$\begin{vmatrix} \mathbf{y} - 1 = 0 \\ \mathbf{y} = 1 \end{vmatrix} \begin{vmatrix} \mathbf{y} - 9 = 0 \\ \mathbf{y} = 9 \end{vmatrix}$	
3	Points: $(0,1)$; $(0,9)$	

Graph:

