Linear Functions - Equations of Lines

$$[y = f(x) = m x + b]$$
Slope y-intercept

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

Linear Function Form (Slope & y-Intercept): y = f(x) = mx + b

If $\mathbf{x} = 0 \Rightarrow \mathbf{y} = \mathbf{f}(0) = \mathbf{m} * 0 + \mathbf{b} = \mathbf{b} \Rightarrow (0, \mathbf{b})$ is the y-intercept point.

The letter **m** represents the "slope" of the "line" formed by $\mathbf{y} = \mathbf{f}(\mathbf{x}) = \mathbf{m}\mathbf{x} + \mathbf{b}$. For if we pick two different points $(\mathbf{x}_1, \mathbf{y}_1) & (\mathbf{x}_2, \mathbf{y}_2)$ on the graph of \mathbf{f} and find $\frac{\text{Change in the y-values}}{\text{Change in the x-values}}$, we obtain

$$\frac{\text{Change in the y-values}}{\text{Change in the x-values}} = \frac{\mathbf{f}(\mathbf{x}_2) - \mathbf{f}(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_1}$$

$$= \frac{(\mathbf{m}\mathbf{x}_2 + \mathbf{b}) - (\mathbf{m}\mathbf{x}_1 + \mathbf{b})}{\mathbf{x}_2 - \mathbf{x}_1}$$

$$= \frac{\mathbf{m}(\mathbf{x}_2 - \mathbf{x}_1)}{(\mathbf{x}_2 - \mathbf{x}_1)}$$

$$= \mathbf{m}$$

Slope

So, for any two points, the $\frac{\text{Change in the y-values}}{\text{Change in the x-values}}$ is ALWAYS the same constant **m**. Therefore, its graph is a straight line with slope **m**. If $\mathbf{m} = 0$, we obtain a horizontal line: $\mathbf{y} = \mathbf{b}$

Consider $\mathbf{y} = \mathbf{f}(\mathbf{x}) = \mathbf{m}\mathbf{x} + \mathbf{b} = -\frac{3}{2}\mathbf{x} + 4$. We'll now find four (4) important properties that \mathbf{f} possesses.

Properties:

- 1. Domain: **Dom** $\mathbf{f} = \mathbb{R}_{\mathbf{x}}$; there are no real numbers to reject.
- 2. Intercepts:

a.
$$\mathbf{y}$$
: Set $\mathbf{x} = 0$
 $\mathbf{f}(0) = 4 \Rightarrow (0,4) = (0,\mathbf{b})$; y-intercept point

b.
$$\mathbf{x} : \text{Set } \mathbf{y} = \mathbf{f}(\mathbf{x}) = 0$$

$$0 \stackrel{\text{SET}}{=} \mathbf{y} = \mathbf{f}(\mathbf{x}) = -\frac{3}{2}\mathbf{x} + 4$$

$$\frac{3}{2}\mathbf{x} = 4$$

$$\mathbf{x} = \frac{8}{3} \Rightarrow \left(\frac{8}{3}, 0\right) ; \mathbf{x} \text{-intercept point}$$

- 3. Slope: $\mathbf{m} = -\frac{3}{2}$
- 4. Range: Range $f = \mathbb{R}_y$, note the range is the projection of the graph onto the y-axis.

Drawing a straight line through the two (2) intercept points, we obtain the graph of **f**:

Note: The slope is *negative* so the line is slanted downward.

Although a straight line may be represented by y = mx + b, there are several other ways to represent a line:

Given two (2) points $P(\mathbf{x}_1, \mathbf{y}_1)$ and $Q(\mathbf{x}_2, \mathbf{y}_2)$ (so that the slope is $\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$) or one point $P(\mathbf{x}_1, \mathbf{y}_1)$ and a slope \mathbf{m} , there are four (4) forms the equation of a straight line using these data can take:

- 1. Standard Form: Ax + By = C
 - a. Two Points: $A = y_2 y_1$; $B = x_1 x_2$; $C = x_2y_1 x_1y_2$
 - b. Point & Slope: A = m; B = -1; $C = mx_1 y_1$
- 2. Slope & y-Intercept Form: y = mx + b; $m = \frac{y_2 y_1}{x_2 x_1}$; $b = y_1 \frac{y_2 y_1}{x_2 x_1}x_1$ (Linear Function Form)
- 3. **Point & Slope Form:** $\mathbf{y} \mathbf{y}_1 = \mathbf{m} (\mathbf{x} \mathbf{x}_1)$; $\mathbf{m} = \frac{\mathbf{y}_2 \mathbf{y}_1}{\mathbf{x}_2 \mathbf{x}_1}$ if two points are given
- 4. **Two Point Form**: $y y_1 = \frac{y_2 y_1}{x_2 x_1} (x x_1)$

Example 01: Consider the straight line 4x + 7y = 24. Put this line in "linear function form" and find the properties of the function f.

Solution:

We first solve 4x + 7y = 24 for y:

Step	Equation	Reason
0	$4\mathbf{x} + 7\mathbf{y} = 24$	y = ?
1	$7\mathbf{y} = 24 - 4\mathbf{x}$	
2	$\mathbf{y} = \frac{24 - 4\mathbf{x}}{7} = -\frac{4}{7}\mathbf{x} + \frac{24}{7}$	
3	$\mathbf{y} = \mathbf{f}(\mathbf{x}) = -\frac{4}{7}\mathbf{x} + \frac{24}{7}$	
	$= \mathbf{m}\mathbf{x} + \mathbf{b}$	

Properties:

- 1. Domain: Dom $\mathbf{f} = \mathbb{R}_{\mathbf{x}}$
- 2. Intercepts:

a.
$$\mathbf{y}$$
: Set $\mathbf{x} = 0$

$$\mathbf{f}(0) = \frac{24}{7} \Rightarrow \left(0, \frac{24}{7}\right) = (0, \mathbf{b})$$
; y-intercept point
b. \mathbf{x} : Set $\mathbf{y} = \mathbf{f}(\mathbf{x}) = 0$

$$0 \stackrel{\text{SET}}{=} \mathbf{y} = \mathbf{f}(\mathbf{x}) = -\frac{4}{7}\mathbf{x} + \frac{24}{7}$$

$$\frac{4}{7}\mathbf{x} = \frac{24}{7}$$

$$\mathbf{x} = \frac{24}{4} = 6 \Rightarrow (6,0) \text{ ; x-intercept point}$$

- 3. Slope: $\mathbf{m} = -\frac{4}{7}$
- 4. Range: Range $\mathbf{f} = \mathbb{R}_{y}$

Below, we have the graph of f:

Example 02: Consider the straight line defined by $\mathbf{m} = \frac{5}{3}$ and $\mathbf{P}(-4,7)$. Put this line in "linear function form" and find the properties of the function \mathbf{f} .

Solution:

Using the Point & Slope Form, we obtain:

Step	Calculation	Reason
0	$\mathbf{y} - \mathbf{y}_1 = \mathbf{m} (\mathbf{x} - \mathbf{x}_1)$	Point-slope form
1	$\mathbf{y} - \begin{bmatrix} 7 \end{bmatrix} = \begin{bmatrix} \frac{5}{3} \end{bmatrix} (\mathbf{x} - \begin{bmatrix} -4 \end{bmatrix})$	
2	$\mathbf{y} = \frac{5}{3}\mathbf{x} + \frac{20}{3} + 7 = \frac{5}{3}\mathbf{x} + \frac{41}{3}$	
3	$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \frac{5}{3}\mathbf{x} + \frac{41}{3}$ $= \mathbf{m}\mathbf{x} + \mathbf{b}$	

Properties:

- 1. Domain: **Dom** $\mathbf{f} = \mathbb{R}_{\mathbf{x}}$
- 2. Intercepts:

a.
$$\mathbf{y}$$
: Set $\mathbf{x} = 0$

$$\mathbf{f}(0) = \frac{41}{3} \Rightarrow \left(0, \frac{41}{3}\right) = (0, \mathbf{b})$$
; y-intercept point

b.
$$\mathbf{x} : \text{Set } \mathbf{y} = \mathbf{f}(\mathbf{x}) = 0$$

 $\mathbf{y} = \mathbf{f}(\mathbf{x}) = \frac{5}{3}\mathbf{x} + \frac{41}{3} = 0$
 $\frac{5}{3}\mathbf{x} = -\frac{41}{3}$
 $\mathbf{x} = -\frac{41}{5} \Rightarrow \left(-\frac{41}{5}, 0\right)$; x-intercept point

- 3. Slope: $\mathbf{m} = \frac{5}{3}$; given
- 4. Range: Range $\mathbf{f} = \mathbb{R}_{y}$

The graph is below:

Example 03: Consider the straight line defined by P(-3,2) and Q(5,9). Put this line in "linear function form" and find the properties of the function f.

Solution:

The slope is $\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{\begin{bmatrix} 9 \end{bmatrix} - \begin{bmatrix} 2 \end{bmatrix}}{\begin{bmatrix} 5 \end{bmatrix} - \begin{bmatrix} -3 \end{bmatrix}} = \frac{7}{8}$. Now, using the Point & Slope Form, we have:

Step	Calculation	Reason
0	$\mathbf{y} - \mathbf{y}_1 = \mathbf{m} \left(\mathbf{x} - \mathbf{x}_1 \right)$	Point-slope form
1	$\mathbf{y} - \begin{bmatrix} 2 \end{bmatrix} = \begin{bmatrix} \frac{7}{8} \end{bmatrix} (\mathbf{x} - \begin{bmatrix} -3 \end{bmatrix})$	
2	$\mathbf{y} = \frac{7}{8}\mathbf{x} + \frac{21}{8} + 2 = \frac{7}{8}\mathbf{x} + \frac{37}{8}$	
3	$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \frac{7}{8}\mathbf{x} + \frac{37}{8}$	

Properties:

- 1. Domain: Dom $f = \mathbb{R}_x$
- 2. Intercepts:

a.
$$\mathbf{y} : \text{Set } \mathbf{x} = 0$$

$$\mathbf{f}(0) = \frac{37}{8} \Rightarrow \left(0, \frac{37}{8}\right) = (0, \mathbf{b})$$

b.
$$\mathbf{x} : \text{Set } \mathbf{y} = \mathbf{f}(\mathbf{x}) = 0$$

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \frac{7}{8}\mathbf{x} + \frac{37}{8} \stackrel{\text{SET}}{=} 0$$

$$\frac{7}{8}\mathbf{x} = -\frac{37}{8}$$

$$\mathbf{x} = -\frac{37}{7} \Rightarrow \left(-\frac{37}{7}, 0\right)$$

3. Slope:
$$\mathbf{m} = \frac{7}{8}$$

4. Range: Range
$$\mathbf{f} = \mathbb{R}_{y}$$

The graph is below:

